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Abstract We propose a model of semi-vicious walkers, which interpolates between the
totally asymmetric simple exclusion process and the vicious walkers model, having the two
as limiting cases. For this model we calculate the asymptotics of the survival probability for
m particles and obtain a scaling function, which describes the transition from one limiting
case to another. Then, we use a fluctuation-dissipation relation allowing us to reinterpret the
result as the particle current generating function in the totally asymmetric simple exclusion
process. Thus we obtain the particle current distribution asymptotically in the large time
limit as the number of particles is fixed. The results apply to the large deviation scale as well
as to the diffusive scale. In the latter we obtain a new universal distribution, which has a
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m(m—1)

2
2
y— —ocoande Zny~ " 2 asy— oO.

Keywords Asymmetric simple exclusion process - Vicious walkers - Bethe ansatz

1 Introduction

Exact solutions of 1-dimensional (1D) many particle stochastic models [41] have given
much insight into the physics of non-equilibrium systems in one dimension [42]. They serve
as a testing ground for the macroscopic theories, being able to verify their predictions [3].
Examples are the description of different kinds of non-equilibrium phase transitions [10],
calculation of the large deviation functions for the density profile and total particle cur-
rent [6], verification of the fluctuation dissipation relations [27] and testing of the range of
their validity [20].
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The range of models is very broad. In the context of the present article we mention two of
them. The first one is the lock step model of vicious walkers (VW) that has been introduced
in the physical literature by M. Fisher [14] to describe the wetting and melting phenom-
ena. This is a random process defined as many non-interacting particles performing random
walks on a 1D lattice, whose space-time trajectories are forbidden to cross each other. The
term non-interacting means that the probability of a particular realization of the process,
which meets the latter constraint, is given by the product of the probabilities of the random
walks performed by each individual walker. The other realizations, where crossings occur,
are assigned zero statistical weight. Such an elimination of a fraction of possible outcomes
at every time step violates the probability conservation. A measure of the probability dissi-
pation is the sum of the probabilities of all possible particle configurations at a given time,

referred to as the survival probability. Its leading asymptotics for m particles has been shown
by M. Fisher to decay with time ¢ as a power law: o

Another model, the totally asymmetric simple exclusion process (TASEP) [29], has been
widely discussed in connection to the Kardar-Parisi-Zhang universality class [24]. In con-
trast to the VW model, this is a model of interacting random walks. The interaction prevents
particles from jumping to occupied sites. Therefore, similarly to vicious walkers, the statis-
tical ensemble includes only those events in which the space-time trajectories of particles do
not cross. The difference is that there is an interaction that changes the statistical weights of
particle trajectories when they pass via neighboring sites so that the total probability is con-
served. In this case the quantity corresponding to the survival probability is just a probability
normalization constant.

Thus, the probability lost after imposing the global non-crossing constraint on the dy-
namics of non-interacting particles in VW is regained in the TASEP by adding the lacking
probability locally at certain steps. In the present paper we consider the two models as lim-
iting cases of a more general interaction, where the added probability is a varying parameter
of the model that controls the probability dissipation, such that the probability conservation
is restored when it is tuned to the TASEP value. In this connection a natural question arises:
what happens with Fisher’s asymptotics for the survival probability under such a general-
ization and, in particular, how does it cross over to the TASEP normalization constant. This
is the first question we address in this paper.

Specifically, we propose a semi-vicious walkers (SVW) model, which interpolates be-
tween VW and TASEP. It is a model of interacting particles with partial repulsion or attrac-
tion, where trajectory crossings are forbidden. The term partial repulsion (attraction) means
that the probability for the particle to jump to an occupied site is not equal to zero like
in TASEP but can be less (greater) than that of a free particle. At the same time, the non-
crossing constraint leads to lack of probability conservation in the same way as in the VW
model. The strength of the interaction, which also characterizes the probability dissipation,
is a parameter of the model, which has the TASEP and VW as limiting cases at the endpoints
of its range.

In this article we obtain the large-time asymptotics of the survival probability. Its limiting
case corresponding to VW is given by the above mentioned result of Fisher, which yields
the leading power law asymptotics. Later it was reproduced with more mathematical rigor
together with the constant prefactor that was obtained for the particular initial configura-
tions, where the particles are separated by equal spaces [25]. In the case of a general initial
configuration of walkers this prefactor depends on the initial positions. This case has been
studied in [38].

Our results can be roughly divided into two parts. For generic values of the interaction
strength, away from the point corresponding to the TASEP, the probability dissipation is fi-
nite. It is intuitively clear that the main asymptotics must be similar to the VW one. Indeed,
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we obtain the Fisher’s power law with a constant prefactor that depends on the initial po-
sitions of the particles and on the interaction strength. It is shown to diverge in the TASEP
limit. The second and probably the most interesting case is the transition region, which in-
terpolates between the VW and TASEP behavior. To probe into this region, we consider a
scaling limit of the survival probability, where the large time limit and the TASEP limit of
the interaction strength are combined. In this way we obtain a scaling function of a single
parameter that controls the transition from VW to TASEP.

The second problem we address is the distribution of the integral particle current in
TASEP. A first example of such an exact distribution has been obtained by Derrida and
Lebowitz [8], who found the large deviation function for the particle current in the TASEP
confined to a ring. A specific property of the finite system is that there is a finite relaxation
time, after which the system settles into a non-equilibrium stationary state, independent of
initial conditions [18]. Then, the tool used to study integral current fluctuations is, roughly
speaking, an analysis of the relaxation of the system subject to a perturbation into the sta-
tionary state. Technically it is an analysis of the largest eigenvalue of the perturbed Markov
matrix governing the process.

In genuinely infinite systems the situation is more peculiar. In this case there is no char-
acteristic relaxation time scale. When starting away from the stationary state, the latter is
never approached. In this case one needs to consider actual time evolution of quantities of
interest, which depend on initial conditions. A major breakthrough in this direction has been
achieved by Johansson, [21]. He considered the TASEP evolution of an infinite cluster of
particles, which initially occupies all sites of the lattice to the left of a fixed site, and cal-
culated the distribution of the number of steps made by an arbitrary particle in this cluster.
Johansson’s solution has initiated a burst of activity in the field, which exploited deep con-
nections of the TASEP to the theory of random matrix ensembles and the determinantal
point processes. Results have been obtained for different initial conditions and extended to
many particle joint distributions [4, 13, 34, 37, 39]. Remarkably, in the scaling limit these
results provide parameter free universal distributions [35] of the fluctuations measured in
the KPZ characteristic scale, which is of order of #!/3 as time # grows to infinity [26]. This is
in contrast to the diffusive scale #'/2, which, according to the Central Limit Theorem (CLT),
characterizes the fluctuations of the distance travelled by a free particle [12]. The large de-
viation limit of the single particle current distribution has been studied in [19] in connection
with the fluctuation dissipation relations.

Despite the great success in finding the distributions of single particle currents and their
correlation functions, very few results on the integral particle current, i.e. on the distance
travelled by all particles, are available for driven diffusive systems. In fact the only known
exact result is the above mentioned large deviation function for the integral particle current
for the TASEP in a ring [8] and its generalization for the partially asymmetric case [23, 28].
No results beyond the large deviation scale, neither a generalization for an infinite system has
been proposed. On the other hand, extensive quantities like the integral current, are important
ingredients of the thermodynamics of the models. A knowledge of the character of their
fluctuations could be of help for extension of the thermodynamical formalism to irreversible
systems. The present paper makes a step in this direction. The problem we solve here is as
follows. We study the large time asymptotics of the distribution of the total number of jumps
made by a finite number of TASEP particles in an infinite lattice, given an arbitrary initial
configuration. The idea that allows us to consider this problem in line with the previous
one is the existence of a kind of fluctuation-dissipation relation that unifies the dissipation
of probability in SVW and the statistics of fluctuations of the integrated particle current in
TASEDP. Specifically, an auxiliary parameter, which violates the probability conservation, can
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be introduced into the evolution operator in TASEP to account for the total number of steps
made by particles, see e.g. [5]. This parameter plays a role similar to the one played by the
interaction in SVW, the two problems being equivalent after a certain change of variables.
Using this fact, we interpret the result obtained for the survival probability in SVW as a
generating function of the particle current in TASEP. The latter, in its turn, can be used to
reconstruct the form of the current distribution.

Like those for SVW, the results obtained for the TASEP particle current consist of two
parts. The generic values of the interaction strength correspond to the distribution of the
particle current at the large deviation scale, i.e. describes the deviations of order of time .
It turns out that it has a skew distribution with asymmetric negative and positive tails. These
tails are connected by a middle part corresponding to the transition region. The latter yields
the current distribution at the diffusive scale, ¢'/2, which is shown to have a skew non-
Gaussian form, depending only on the total number of particles, and we suggest to be uni-
versal for particles performing a driven diffusion.

One technical remark has to be made about the connection of our solution to the theory of
random matrix ensembles. It is this connection which enabled the above mentioned progress
in calculating the single particle current distributions and their many particle generalizations.
In our solution this connection has also been exploited. Namely, the survival probability
in the SVW model at generic values of the interaction strength and exactly at the TASEP
point can be calculated in terms the Mehta integrals /,, ; with k = 1/2 and k = 1, which
appear as normalization factors in the orthogonal and unitary Gaussian ensembles of random
matrices respectively [33]. Note, however, that the scaling function obtained in the transition
region for the system of m particles can be reduced to neither of these integrals except of at
three limiting points, where it becomes 1, 12,11 and I,y respectively. Thus, we obtain
a generalized object, which interpolates between these three Mehta integrals, and, therefore,
in a sense unifies three different matrix ensembles. To our knowledge no such generalization
has appeared in the theory before.

The article is organized as follows. In Sect. 2 we formulate the SVW model, state the
results obtained and discuss their interpretation in terms of the probability distribution of
the particle current in TASEP. Sections 3-5 are a technical part, where we prove the results
outlined in Sect. 2. In Sect. 3 we solve the master equation for the SVW model. In Sect. 4
we obtain the asymptotic formulas for the transition probabilities. In Sect. 5 we prove the
limiting properties of the function characterizing the SVW to TASEP transition. Section 6
has a summary and conclusions.

2 Model and Results
2.1 Semi Vicious Walkers Model

Consider m particles on a 1D infinite lattice. A configuration X of the system is specified
by an m-tuple of strictly increasing integers

X={xi<xx<- - <xn} (D

where x; is the coordinate of i-th particle. The strictly increasing order reflects the exclusion
condition, i.e. two particles cannot occupy the same site. We say that the relation X <Y
holds for particle configurations if

X< <X < Yn. 2)
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The SVW model is a random process, which is defined on a set of sequences of configura-
tions X%, X', ..., X', such that

X' <x'...<x". 3)

We refer to such a sequence as a trajectory of the system traveled up to time ¢. Every such
trajectory is realized with probability

PX, ... X)) =T, X T(X% XHT (X", X°) Py (X"). “

Py (X) is the initial probability of the configuration X and the transition probability 7' (X, Y),
from the configuration Y to X, is defined as follows

m—1

T(X,¥) =90 — yu) [ [0 — v, xi1 = 30, ©)
k=1

where
D (k) = (1 = p)éko + pdi.1. (6)
Ok,l) =1 — p(l —«8,1))8k0+ Pd.1, (N

and

O0<p<l, (8)
1—-1/p<k<l. ©®

This means that at each discrete time step a particle can jump forward with probability p
or stay put with probability 1 — p, provided that the next site is empty. If the next site is
occupied, the probability for a particle to stay putis (1 — p(1 — «)). The probability deficit
p(1 —«), corresponds to the process when the particle jumps to the adjoining occupied site,
which is forbidden. This excluded process results in probability dissipation in this model.
The form of the transition probabilities corresponds to the backward sequential update, i.e.
the particles are updated starting from the m-th particles one by one in backward direction.
In particular limiting cases the model reduces to

1. k = 0—VW, a particle jumps forward with probability p or stays with probability
(1 — p), irrespective of whether the next site is occupied or not. But then those real-
izations of the process where two particles come to the same site must be removed from
the statistical ensemble.

2. k = 1—TASEP, a particle jumps forward with probability p or stays with probability
(1 — p) provided the adjoining site is empty. When the next site is occupied the particle
stays where it is with probability 1.

The TASEP with the backward sequential update was studied in [2] and [37], where it was
referred to as a fragmentation model. In the case ¥ = (1 — 1/ p), the probability for a particle
to stay where it is when the next site occupied, is zero. Therefore, the trajectories of particles
passing via neighboring sites have zero weight, i.e. they are removed from the ensemble as
well as those which meet at the same site. Therefore this situation resembles the vicious
walks of dimers. The range of « given in (9) is due to the requirement for (1 — p(1 —«)) to be
a probability. Positive values of k correspond to repulsive interaction, while negative values
correspond to an attractive interaction. The domain « > 1 is also of interest in connection
with the current fluctuation in TASEP, though it does not have a probabilistic meaning in the
context of SVW.
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2.2 The Results About the SVW Model
Let us consider the quantity

P(X= Y PX°...XD), (10)

X0<x!l..<x!

where the sum is over all the trajectories of the system starting at the configuration X°,
i.e. Py(X) = 8y xo. This quantity is the partition function of the statistical ensemble of the
trajectories with the statistical weights defined above. On the other hand, if we add the
lacking processes allowing the particles to jump to an occupied site, the value of P;(X°)
will have the meaning of probability for all the particles not to meet up to time ¢. In Fisher’s
original formulation of such a process, two particles annihilate when getting to the same
site. Then, P,(X°) is the probability for m particles to survive up to time ¢. Therefore, we
refer to this quantity as a survival probability. Below we formulate three theorems, which
specify the asymptotic behaviour of the survival probability in the limit of large time for
different parts of the range of the parameter «. The proof of these theorems is the content of
Sects. 4, 5.

Remark I Two of the theorems below are stated and proved for complex valued parameter «
and the third one for real ¥ > 1. Obviously, the quantity obtained there has the meaning of a
survival probability only for real « varying in the range (9). Consideration of other values of
K is justified by its later interpretation in terms of the generating function of the moments of
the total particle current in the TASEP. In the latter case the complex values of « turn out to
be meaningful and useful to reconstruct the total particle current distribution in the TASEP.

2.2.1 The Survival Probability for SVW

Generic Case, || < 1. In this case the asymptotic behavior of the survival probability
P,(X°) as t — oo is given by the following theorem.

Theorem 1 Let k € C be a fixed complex number from the domain |k| < 1, and let |xi0 -
x?| < oo foranyi,j=1,...,m. Then, as t — oo the survival probability P,(X°) for m
particles is

m(m—1)

PX") = Aw; XOtp(1— p)I7 5 [1+ O((ogt)’t~"/%)], (11)

where the prefactor is given by

27T, Td/2+ 1)
m(m—1)

(1 =)™ 5 /2

Ak; X°) = det(gi ; (xp — X )], o (12)

and where the function g; ;j(x; k) is defined by

_ i—1 X
gi,_,'(x;lc)=7§ dé (k +«& 1){ (1+8&) . (13)
Co

27 £

Thus, in the range « < 1, up to the factor A(X 0: k), which captures the dependence on
the initial configuration X, the survival probability reproduces Fisher’s power law. All the
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dependence on X is in fact hidden in the determinantal part of A(X?; «). In some particular
cases the determinant can be simplified to a more transparent expression. For example, for
equidistant initial conditions,

x° x?:a(m—i), (14)

o

where a is a positive integer, it can be calculated explicitly:

m(m—1)

detlg; ; (xp —x{: 1)) iy = (a4 —ak) 7 . (15)
In the limit ¥ — 0 the determinant reduces to
x0 40
detlgi;(xg —x: 0= [] —-——. (16)
I<i<j<m J

Then, up to rescaling of space and time, one recovers the result [38] for VW:

_m . m@m=2) % 1 .
0 0 0 4 I=1 @=01> even m
AG:X)= JT of=ad1 L an
I<i<j<m TATE2T = @y oddm
In the limit « — 1, we have
detlo: :(x® — x0: 1 -1 18
€ [glvj (xm Xis )]15,',]5”1 - ( )

This limit corresponds to the TASEP. Hence the asymptotics must change, as the probability
conservation is restored. The signature of this fact is the divergence of the term A(x; X°)
that takes place in this limit. Specifically, (12) and (18) suggests that as x approaches one,
A(k; X°) diverges as (1 — k)™ ~1D/2_ Comparing the exponent of this expression with the
one of the time decay ¢~ ~1/4 we can guess that the transition takes place on the scale
(1 — k) ~ 1/+/t. This hypothesis is justified below.

Generic Case, k > 1. In this case no values of « fall into the range (9). Therefore, accord-
ing to the Remark 1, the result formally obtained for P, (X°) does not have a probabilistic
meaning in terms of SVW. However, it is still meaningful for the description of current
fluctuation in the TASEP.

Theorem 2 Let k € (1,00) be a fixed real number, and let |X,Q — x?l < oo foranyi, j=
1,...,m. Then, as t — 00, the survival probability P;(X°) for m particles is

PXY =0 -p+xp)” VA -p+x""p)

0 0 0
- X0 —(m—1Dx
[m]:( lK'xl Xm—1 (m—1), m

— [14 O((logt)*t~V)]. (19)
Here we use the common notations
[m], = 11__‘]: (20)
for the g-number and
[(mlg! =111, -~ [mly 2D
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for the g-factorial. Note that the g-numbers turn to usual numbers [m], — m in the limit
qg—1.

Transition Regime, k — 1.  Consider the limit
t—o00, k-1, (1—x)/t=const. (22)

We introduce the parameter

o= lim[(1 = k)y/1p(1 = p)I. (23)

Theorem 3 Let the condition |x? — x;)| < oo hold foralli,j=1,...,m. Then in the limit
(22), for the parameter o € C defined in (23) taking any fixed complex value, P;(X°) con-
verges to
(log 1)’ )}
Pr=fu(@)| 14+ 0 , 24
= S )[ ( i (24

where the function f,, («) has the form of a multiple integral:
(_ 1) m(;ré—l)
Qm)Z2!--- (m —2)!

X/ dM1/ duz-”/ de/ dl)z---/ dl)m
—00 ujy Umpm—1 0 0

fm(a) =

m
» ; L0 g
Xe*f“ln”;_zeiz(u‘ﬂ’) Ay, vy, V), (25)
i=2
where
Ay ox)= [ @i—xp (26)
1<i<j<m

is the Vandermonde determinant.

The argument of P, in (24) can be omitted as the dependence on the initial configuration
is lost in the limit under consideration. The limiting behaviors of f,, (o) match the TASEP
and VW asymptotics. Indeed, we prove in Sect. 5 that

lim o™ _12r e Td/2+1 27
Jim o fm(a)—ﬁnm/zl];[ /2+1), 27)
fm (O) =1, (28)
m—1
. _azm(m—]) B m
jam e f’"(“)_(m—l)!' 29)

In (27) and (29) the imaginary part of « is implied to take an arbitrary fixed value. The
proof of these three limits given in Sect. 5 is done by reducing f,,(«) to different cases of
Mehta integrals, I,, 1,2, 1,1 and I,,_; | respectively, which are well known in the theory of
Gaussian random matrix ensembles [33].
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Fig. 1 The log—log plot of the A a1 1 1

function f>(e) in the range o > 0 -4 - 2 4
log o

=3F log (o)

The above results can be illustrated by the example of the two particle case, m = 2, when
the integral (25) for f>(«) simplifies significantly.

(@) = e Erfe(a). (30)

Here Erfc(«) is the complementary Error function

Erfc(a) = % / " dxe (31)

In Fig. 1 we show how f,(«) interpolates between the SVW and TASEP limiting cases,
which are (27) and (28) respectively.

2.3 Current Fluctuations in TASEP

Consider the process with the transition weights T(X , Y) defined similarly to (5) but where
the functions 9 (k) and 0 (k, [) are replaced by

F(k) = (1= P)deo+ ¢ Poe1, (32)

Ok, 1) = (1= p(1 = 8.1))8k.0 + € Por.1. (33)

Here 0 < p < 1 and y is a complex-valued parameter. It is not difficult to see that these

transition weights correspond to the TASEP except that for each particle, the probability p
to jump is multiplied by an additional factor €7, i.e.

e Praspp(X°, ... X)) =T (X", X" T(X", X°) Po(Xo). (34)
where Ppyspp(X°, ..., X") is the probability for a sequence of particle configurations
X9 ..., X', to occur in the TASEP for ¢ successive steps and Y; is the total number of

jumps made by all particles in this sequence of configurations. Thus, one can calculate the
moment generating function for the cumulative particle current as follows,

(@ msep = Y " Prasgp(X°, ... X", (35)

X0<xl..<xt
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On the other hand, we can see that, if we define

Kk=e", (36)

P

T U-per+p 7

p

then the following relation exists between the transition weights f(X , X') defined in (32),
(33) and those of SVW, (6), (7),

A=P™"TX, X)=(1-p)"T(X,X). (3%)

As a result we have
(€ maser = (1 + pe” — 1) P (X, (39)

where P, (X°) is the survival probability calculated for the SVW model, and the parameters
x and p of SVW are related to the parameters p,y of TASEP by (36), (37). The function
(39) encodes all information about the distribution of the integrated particle current. Thus,
we can apply the Theorems 1-3 to obtain the asymptotic form of this distribution.

Large Deviation Function. It follows from the Theorems 1 and 2 and the formula (39) that
for fixed y € R the asymptotic form of the generating function of the particle current Y; is
as follows

m(m—1)

(4P’ —)"™* 7 -y x0
rer 71 N)]m(n;—l) A(e™”, X7)
rerptr . 40

_L,—ym)m—l P Zirl:il (Xr(y)x *"'[Q) ( )
(1—e=V)--(1—e—v(m=D)) Y= 0

Y, ~
(€”"" ) gasep =

(1= p(1—em)) @

From here we conclude that a scaled cumulant generating function of the random variable
Y;/t exists

mlog(l+p(e” —1)) y=0

1
A(y) = lim —log(e"” = :
) 00 t gle™ mser {log(l —p(l—e™)) y<0

It is convex and differentiable everywhere. Therefore, we refer to the Girtner-Ellis theorem
[9, 15] to show that the random variable v, satisfies the large deviation principle with a rate
function

1
I(v) = lim —log P(Y,/t =v) =sup(yv — A(y)).
t—o00 t y
The solution of the maximization problem yields

1) = {mB(v/m) v>mp

B(v/m) v<mp
where B(v) is the usual rate function of the Bernoulli process

l—p

B(w)=(1—-v)log T

+vlog£.
v
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Central Limit Theorem Scaling.  The transition regime corresponds to the following scaling
limit
t—o00, y—0, y+/t=const (41)

To translate the results obtained for this case we consider the random variable
i Y, —mpt
= lim ————,
Y t—o0 |/t p(l — p)

where the convergence is in distribution. Taking the limit (41) in (39), using the Theorem 3
and noting that p— p as y — 0 we obtain

(42)

(€ Vrasep = "2 frn (@), (43)

where « is an arbitrary complex valued parameter related to y via
o= lim y+/tp(1 — p). 44)
—00

The random variable y is the rescaled deviation of the integrated current Y, from mpr,
i.e. from the average value of Y, for m non-interacting particles jumping with probability
p. Note that y is the variable that, in the case of free non-interacting particles, satisfies
the conditions for the applicability of the Central Limit Theorem (CLT). According to the
CLT the probability density function (PDF) of y for m independent particles is the Gauss
distribution,

P (y) = exp(=y*/(2m) /~/2m. (45)

Correspondingly, the generating function of its moments is
(e )tree = exp(mat’/2), (46)

which is the first factor in the moment generating function (43). Therefore, the form of the
second factor, f,, (), shows how the distribution of y differs from the one for free particles.

The moment generating function contains all the information about the original distribu-
tion. In particular, the cumulants of y are given by the derivatives of its logarithm at o« =0,

n

(y )c = 9o

log(e™ ) zusepla=o- 47
The value of the first derivative, i.e.,

(e =)= f£,,(0), (48)

shows how the difference between the mean velocity v, of the center of mass of the particles
and that of free non-interacting particles, which is p, decays with time ¢,
0

I B P ()
N

A nonzero value of f, (0) implies that this difference is of order of t~1/2. As the TASEP
interaction slows down the particle motion, one expects it to be negative, i.e.

(¥)e- (49)

f1(0) <0. (50)
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The second cumulant
()= ") = (P2 =m+ £,0) — (f,,0)* (51)

is related to the diffusion constant A,, of the center of mass.

A= #}gg (r}) : (r)? _ 17(1m—2 ) oy 52)
The next cumulants, e.g.
(e = () =307 () +2()* = (log fun (@) |a=0, (53)
(he = (1 =407 0) =307
+12(y)*(y%) = 6(y)* = (10g fu (@)=, (54)

quantify the discrepancy of the distribution from a Gaussian form, being identically zero for
the latter.

The asymptotical behavior of the generating function at large absolute values of fo can
be readily obtained from the ones of f,, (), (27), (29).

_1 _ 12 2M [T, T /2+1
a ym(m l)ezma [TL, Td/2+1) R — 00

m/2my) ’
(€ ) tasep = L2 S . (55)

1 m—1
e ms m Ra — —00

(m—1)1"

The PDF of the random variable y can be obtained as an inverse Laplace transform of its
moment generating function (43)

BHico do
P, (y) = / e'"“z/H-me(a)T. (56)
B 1

—ioco

As the function f, () is bounded and analytic in any vertical strip of finite width, the para-
meter B can be chosen arbitrarily. The asymptotic results (55) for the generating function can
be used in the integral (56) to evaluate the asymptotics for PDF P,,(y). Choosing 8 =y/m
for y — oo and 8 = y/m? for y — —oo we obtain

2
(m—1) Yy "
(’f’)%e*ﬁ [TL, Td/241) om

— 00
y m\2mxm /2’ y
HOEE . (57)
g -
€ «/E(mfl)! ’ y— =

Thus, the form of the distribution P, (y) is far from being symmetric, having tails of two
Gaussian-like functions with different dispersions, m? and m, on the left and right respec-
tively, the latter also multiplied by “Fisher’s factor” y =" =1/2,

Let us compare these result with the data obtained from Monte Carlo simulations. We
modelled the TASEP for m = 2, 3, 4, 5 particles, which have evolved for t = 100 time-steps,
the statistics having been collected from 10° samples. We would like to compare the data
obtained for the generating function (¢*’) and the PDF P, (y) with our predictions. An
explicit evaluation of these functions requires detailed analysis of the function f,, (o), which
is given by the multiple integral (25). For arbitrary m this needs a significant calculational
effort, which is beyond the goals of the present article. Fortunately, for m = 2 the function
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Fig. 2 Plot of the logarithm of 50r !
the moment generating function log< ™ >
for m = 2. Solid line is the plot of
the formula (58). Dotted line is 40t
the result of Monte Carlo .,
simulations ‘o,
‘. 30¢
".. 20
10t
-4 -2

Table 1 Cumulants of the

random variable y Analytic Numerical analytic Monte Carlo
(e —2x—1/2 —1.12838 —1.12545
2 d—dg! 272676 272518
03 A -3 _0.616636 —0.617642
O%e 32 =32 0.459083 0.498263

Jf2(«) is simple enough, being given by (30), and we can use it for plotting the generating
function and the distribution. In Fig. 2 we show a plot of the logarithm of the m = 2 moment
generating function, whose analytic expression is

() asir = € (1 — Exf(a). 8

It has a skew convex form growing more rapidly to the left than to the right, with a minimum
at @ = 0.432752. One can see good agreement with the numerical data in the central part of
the graph. There is some discrepancy at the tails, which can be attributed to the finite-time
corrections, i.e. the lack of statistics of large events at the finite period of measurement,
which becomes significant when the absolute value of « is large.

The function (58) allows a calculation of any derivatives, and, hence, of any cumulants
of the random variable y. In Table 1 we show the first four cumulants for m = 2, the case
of two particles. Their values are in good agreement with the results from the Monte Carlo
simulations. In Fig. 3 we show the result of numerical evaluation of the integral (56) for
m = 2. There is a very good agreement with the simulation results. At first glance the form
of the distribution shown on Fig. 3a appears Gaussian-like. A more accurate impression of
the form of the distribution is given by the logarithmic plot of Fig. 3b which shows that the
distribution is actually skew, decreasing more rapidly as y grows than as it decreases.

Simulation results obtained for more than two particles can be tested against the asymp-
totical formulas (57) for the tails of the distribution P, (y). In Fig. 4 we plot the distributions
measured for m =2, 3,4, 5 particles, (Fig. 4a), and its logarithm, (Fig. 4b), the latter being
compared with the graphs of (57).

One can see that for all the four graphs the left tails are perfectly fitted already for rather
small values of y. A good fit of the right tail takes place only for m = 2. For m =3 only a
few data points approach the asymptotical line, i.e. in this case the right asymptotical regime
is actually at the borderline of the statistics. In the cases m = 3, 4 the statistics available is
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F log P, (1)

a b

Fig. 3 Probability density function Py, (y) for m = 2 particles (a) and its logarithm (b). The solid line shows
the theoretical predictions for the distributions

0.30¢
Pu(y)
0.201
=3 L
m=4 < "
mes, " 008
o, O e %
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S .
o » S .
,-"". 5 ".' ., O.(_)S"-. '..
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Fig.4 (Color online) Probability density function Py, (y) for m =2, 3, 4, 5 particles (a) and its logarithm (b).
The solid lines show the theoretical asymptotics of the tails of the distributions

clearly not good enough to reach the asymptotical regime. Significantly larger evolution
time and statistics would have to be considered.

3 The Master Equation

From now on we consider only the SVW model dependent on the parameters p and x. Our
first step is to calculate the probability P,(X, X°) of transition from the configuration X° to
X for arbitrary time ¢:

P(X.X= > PX°...X". (59)
X0<x!l..<xt=X

The method of finding the transition probability was first developed by Schiitz for the con-
tinuous time TASEP [40], who used the Bethe Ansatz first applied to the ASEP by Gwa and
Spohn [18]. Here we follow a similar procedure. The transition probability obeys the master

equation
P(X, X% =Y T(X,X)P_ (X', X°); (60)

X/
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the transition weights 7'(X, X’) being defined as above, (5)—(7). The problem of finding the
eigenvectors and eigenvalues of the matrix 7' (X, X’) can be solved by the Bethe Ansatz
technique. As this technique is rather standard and has been reviewed in many monographs,
we simply state the results here. For details of similar derivations, the reader can consult
for example with the review [5]. As a result we obtain the solution of the left and right
eigenvalue problems for the Markov matrix 7 (X, X'):

AZ)Wz(X) =) T(X, X Wz(X), (61)
X/
AV (X) =) T(X, X)¥z(X) (62)
X/
parametrized by an m-tuple of complex parameters Z = {zy, ..., 2,,}. The corresponding

eigenvalue is expressed in terms of these parameters,
AZ)=]]a=p+p/z). (63)
i=1
and the eigenvectors are given by the following determinants
Wz(X) =det(z;’ (1 — k2)" )1<ij<m: (64)
Uz (X) = det(z; ' (1 —kz)’ izijzm- (65)

It is not difficult to check that these two eigenfunctions can be used to construct the resolu-
tion of the identity operator

1 — - dz;

— PV, (XY, (X =68y x, 66

m!f 2(X)W4( )l];[zm XX (66)
where the integration over each z;,i =1, ..., m, is along a contour of integration which has

to satisfy the requirement that the pole of the wave function at z = 1/« has to lie in the
exterior. Then the solution of the initial value problem for the master equation is given by

m

1 — dz;
PX. X% = — f A2, ()T, (X [ ome (67)
m! i 2mwiz;
Finally we end up with the following integral expression for the transition probability
m xi—xo
Z- m
P(X, XY= A'(Z —
(X, X% f ( )H[(l _Kzi),_l]
0.0 P dz
Xm X i—1 Zi
xdet(z" (1 —rz) ") o [ 55 (68)

The integration can be easily performed by counting the residues. The result is a determinant
of an m x m matrix of the form similar to the one obtained for the discrete time TASEP with
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backward update [2, 37]. Note that in the case of vicious walkers, k = 0, the eigenfunctions
are of free fermion type

W, (X) = det(z;” ) 1<i. j<ms (69)
Wy (X) =det(z; ) i<ij<m- (70)

and the integration yields the famous Lindstrom-Gessel-Viennot theorem [16, 30].

P(X, X°) =det[Fo(x; — x9,1)] , (71)

1<i,j<m

where
Fo(x,t)=p*(1=p)'™ (;) (72)

These formulas serve as a starting point for the asymptotical analysis of the survival proba-
bility.

4 Asymptotic form of the Survival Probability

To obtain the survival probability P; (X°) for SVW we have to sum the transition probability
P,(X, X°) over the set of all final configurations X:

P(X") =) P(X.XO). (73)

{x}

We solve this problem in the limit + — oo. For pedagogical reasons we first outline the
derivation for the VW model, which simply reproduce Rubey’s results, [38]. The procedure
we use amounts to an asymptotical analysis of the expression for P,(X, X°) by means of the
saddle point approximation for the integral (67), which reduces the sum over final config-
urations to known integrals. The main ingredients of the derivation for the VW model are
then applied similarly to the SVW model but with some modifications.

4.1 Vicious Walkers

In the case of VW (x = 0), the integral (68) takes the form

m

Al ol =) dz
O]z " det(,” izijen [ | (74)
k=1 =1

27'[iZ1 ’

Here, the determinant under the integral can be expressed in terms of the Vandermonde
determinant

AZ)=det(@ Nizijem= [] @ —zp. (75)

I<i<j<m
and the Schur function [31]

5@t zm) =det@ ") A2Z) (76)
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parametrized by the partition x = (x; > x2 > - n > 0) defined by
X=(x —x1 m+1x —)c2 m+2,...), )
as follows:
x9—x0
det(z;" i< jem = A(Z)sy (Z). (78)

Thus (74) can be rewritten in the following form

dz;
0y thi(z;) %1
Pr(X, X )_fA(Z)sX(Z)]_[e @) o (79)
where
hi(z) =log(1 — p+ p/z) +v;logz (80)
and
Xi — )Cgl

Vv, =

(D)
t

Now we are ready to estimate the integral asymptotically as ¢+ — oco. We assume that the

differences (x? - x?) are kept bounded for any i and j. The saddle point of the function

under the integral is defined by the equation

W) =0, (82)
which yields
1-v
;k — ﬂ (83)
= pui

In the vicinity of the saddle point 4;(z) has an expansion

1— 1—v; v;
h,-(z;*+5)=log[(l_5> (vﬁ) }

1/1—-p 23 2 3
+§<—> ——E 4+ 0(&). (84)
p 1 —v

The integration contours can be deformed to a circle centered at 0, crossing the real axis at
z}. Writing points on the circle as z; = z7e!%, we have

R(hi(z) =h() + = log[(l v; (1 — cos(¢;))* + v} sin’(¢))]. (85)

It follows that there is a single maximum at ¢; = 0. Moreover, since all derivatives are
bounded provided v; < 0, the saddle-point approximation holds uniformly in x;. (Note that
(74) is zero if v; > 1, and if v, = 1 then the probability p’ can be extracted as a factor,
the remaining integral over zj, ..., z,,— being of the same form.) It is easy to see that the
contribution to the sum over X from points with v; > p + € for any fixed € > 0 is negligible
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in the limit + — oco. (Below, we shall see that the effective range of the summation is in fact
even smaller.) The saddle-point approximation [11] now yields

s 1 (50

PI(X7XO):< ) 1_[ 2ty (1 —v;)
(1 — Ul)P (l — Um)p
[T @ —ws T

I<i<j<m (1 _p)vl _p)vm

. <1+o(;>). (86)

The next step is to perform the summation (73) over the range of the final configurations
X e {x? <X <--+ <X, < o00o}. For this we need to demonstrate that (86) holds uniformly
in X. To this end we first show that the main contribution to the sum comes from the domain

—«/;logtfxl<---<xm§pt+\/;10gt. 87)

Indeed, h; ((I ”’)" ) is a concave function of v; in the domain v; € (0, 1) with a single maxi-
mum v; = p. It follows that for |x; — pt| > 4/t logt,

(U=vpp (1=vilogt/(1=p) (logn)? logt
M T < M T ety ) = o mtop | 1 4 0( gyl (88)
NG

All the other factors in (86) are at most of polynomial order in ¢, while the total number
of nonzero terms in the sum of interest (73) is O (#"). Therefore, the contribution from the

0g 1 2
complement of (87) being of order of O (t°e %) for some constant s is asymptotically
negligible compared to the contribution from (87).
In the latter one can approximate the function #; (
expansion at v; = p, which yields

a- v)l’

;) by the second term of its Taylor

0 1
P(X, X" = sy (1,..., 1)

Q)% (tp(1 - p)) 5

(xi —x — pt)z) [ ((logt)3 )]
[Texp(- oL —x)|1+0 . (89
Xi:leXp< i—p ) L1 et e(T )|

I<i<j<m

‘We now have to evaluate following sum in the limit ¢t — oo,

> ﬁe‘% [T @ —x) (90)

—tlogt<x|<-<xm< /flogt i=1 I<i<j=m

This can be done by means of the following lemma:

Lemma 1 Let h: R" — R be a twice differentiable function of at most polynomial growth.
Thenas é — 0,

" Z h(yl""’yn)ﬁe_%}'iz
i=1

YI<-<ym; Vi €L
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=/ dylf dyz“-/ dynh (1, y)e YT 1 06). 1)
—00 Y1 Ym—1

Proof We subdivide the domain —o0o < x; < - -+ < x,,, < 00 into hypercubes of the form

8
Bs(y1, ..oy ym) = {(xu,-.-,xm) tmax |x; — yi| < 5}, 92)
where y; € 6Z and y; < y, < -+ < ¥,,. The remaining region is small and its contribution
will be estimated shortly. We then write, for (xi,...,x,) € Bs(b1, .-, Ym),
1.2 2 2 (y2 gy
R(xi, ..o, Xp)e 200 — p(yy Ly e 20T )
1.2 2
< sup max| =—h(uy, ... up)e” 20T g — o (93)
(U1 seonstt)€Bs (31, ym) P=1 | OU
Now,
h(ug, ..., um)e_%(“%*'*“'z")
Bu;
9 — L)
= au.h(ul""aum)_uih(ulv"'7um) e 271 " (94)
1

which is easily seen to be bounded by Ce™" 1++3)/2 for some constant C > 0. It follows

from the convergence of the sum }_ ;7 8e™>"/2 uniformly in 8 that the difference between
the integral over the region

U BGn-m) 95)

VI<<Ym; Yi €L

and the sum is of order §. There remains the integral over the complementary region, but
this is obviously of order § as the integral converges and the region has width §. a

Then, after going to rescaled variables y;, = x;/+/tp(1 —p) and writing § =
1/4/tp(1 — p) the sum (90) reduces to the integral

m(m+1) © o0 © " _lxz
(tp(1—p)) "+ dey | dxuo | dxn[Je 0 T l-xl 96)
- X Ym—1 i=1

o0 m—2 m I<i<j<m

(the range of summation is extended to (—oo < x; < - -+ < x;,, < 00) by the same argument
as above. Note that the absolute value signs |x; — x;|, though redundant in this range, are
nevertheless useful as they make the expression symmetric with respect to permutations of
the variables xi, ..., x,,. One, then, can use this fact to extend the integration to the whole
R™, which yields an additional factor of m!, which has to be compensated in the end. As a
result we obtain

oy 1 L1z (10g1)3>]
PX) = o G e 1)[1 + 0< ) o

@ Springer



502 T.C. Dorlas et al.

o0 o0 (o] 1 m
L E/ dym---/ dyz/ dylexP(—E Zl_zly,-z)

< [T tyi=wl*

I<i<j<m

where

'dk+1

is the Mehta integral [33], which first appeared in the context of Gaussian random matrix
ensembles. Finally, one can use the following formula for the Schur function [31]

Xi—1—Xj+
s =[] T” (99)

I<i<j<m

resulting in the following expression for the survival probability:

. 1 o r(1/2+1)
PO = A= '>/4nm/2,1_!
(logt)’
(0~ x?)[1 + o( )] (100)
lsil:_/lsm ! ﬁ

After reexpressing the gamma functions in terms of factorials we obtain the form given
in (17).

4.2 Semi-vicious Walkers
4.2.1 The Case of Generic k # 1

To study the asymptotic behaviour of the survival probability for the case of general «, one
can start with the following integral representation for the transition probability

le i 1-— Ké:i il X0 —X; +1 X; —x[)
P X XO — A)Tl 1
i )= l_[% 2mwiz; 27115, (1 - /cz,«) §i 4

xA'(2) T]

1<i,j<m

[] @-znE —s. (101)

2 I<i<j<m

5,

where the integration in each variable is along a small circle around zero, |z;| < |§;| for any
i,j=1,...,m. This representation can be reduced to the form (68) by direct integration
over each §; (j =1,...,m). This is done by summing the contributions to the integral
coming from all the poles §; =z;,i=1,...,m.

Though the most of analysis of the large ¢ asymptotics of this expression is similar to the
one for VW, one important difference exists. The expressions under the integrals over z;,
i =2,...,m, have singularities at z; = 1/« the poles of the form (1 — kz;)'~, which can
be located between the origin and the saddle point. In this case the contour being deformed to
the steepest descent one, crosses this singularity and its contribution must then be extracted
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from the saddle point contribution. While for |« | < 1 this does not affect the asymptotics of
the sum over xi, ..., x,,, evaluated subsequently, for || > 1 its contribution turns out to be
dominant.

It is, however, technically difficult to calculate the residue at the multiple pole of the
complicated expression. To avoid this calculation and to evaluate both cases in one go, we
expand the term (1 — kz;)' ™ into a series in powers of (kz;) and then integrate it term by
term in the saddle point approximation. As a result we obtain P;(X, X°) in the form of an
(m — 1)—fold series

Pt(X XO) — Hf dgz K%_k)i_lé_]jg,fx})+l

Co 2711$k
< [T &-8 > Ad&.wm,. i, (102)
1<i<j<m

(12,25

where

A&, viliLy, indily)

m(m—1) m
_ P i 1+n, -2
-(55) ()
e i
(Uj - ;)
iV 2mtvi (1 —v;) I<i<j<m
1— ! 1
CLERE) (eol)
1<i, j<m (1= p; t
X1 —x,?,
V) = ,
t
X —x,gl—‘rn,- .
v =—+——, i=2,...,m. (104)

t

The next step is to use this approximation to perform the summation of (102) over the
domain {x? <X <Xy <-+- <X, < o0o}. The effective range of this summation depends
crucially on the behaviour of the other sum in n5, ..., n,. Namely, the effective summation
range is different depending on whether the value of « is greater or less than one, when the
term «™ is decreasing or increasing respectively. We consider these two cases separately.

The Case |k| < 1. Here k takes arbitrary complex values in the domain |«| < 1. As in
the case of vicious walkers, we argue that the exponential part exp[th; ((l “DP2)] makes the

)
whole expression negligible beyond the range o
p—t""logt <v; < p+1t~"*logt. (105)
In addition, for n; > (log#)?/|log ||| we have
K <l +’:lz_2> — O(I—logt(logZ)Z(i72)), (106)
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so that we can limit the summation over n; to n; < (logt)?/|log|«||. Therefore, n; is negli-
gible compared to x; in the domain (105) and can be neglected in the definition (104) of v;.
In the range (105) we can approximate A({&;, x; /t}/L, {nk}i_,,) by the leading term of its
Taylor expansion at v; = p,i =1,...,m.

A&, xi /1L L)

] m(m—1) m 2
_< HK,,i<z+n,— )
tp(l—p) i n;
m 7(-*,-—pt)2
e 2pd-pi
bl B——————— (xj —xi)
B rtp(1—p) 15,-1:,-[5m !

- _ (log1)?
x[1eE -1 m<1+0( )) (107)
I v

One can see that the terms dependent on {x;} and {n;} decouple and the terms dependent on
ny, ..., N, can be summed up.

Z ]_[ i <’+”’_ ):(1—@*"“#‘”. (108)

{2, 225 =2
The remaining sum over x; fori =1, ..., m is transformed to an integral using Lemma 1:

Z Z A, xi /1), ()

x?<XI<X2<"'<-Xm {ny,..., nm}EZ';O
_m@m—=1) _m m(m—1) e —m
= (tp(1 - 3 el B (G
i=1
X/ dylef""zﬂ/ dyzefy‘zﬂ“'/ dy,e ™2 [T oi-w
—00 i Ym—1 I<i<j<m
(10gt)3>]
x|14+0 . 109
1o (% (1o
Combining (73), (102) and (109) we obtain
1 Ly
P(X°) =
t( ) [p(l _ p)t]m(m—l)/4 (277.’)7}?’[‘
= dg; (1—@)“
x (S & — &)
Eﬁsi—’>] 2migE \ 1 —« ]§i1<_j[§m j i
—af (logt)*
<& - e “[ +0< , 110
1"[(5 )"E, 7 (110)
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where I, 1> is the Mehta integral defined in (98). Writing the above product of integrals in
determinant form and using the definition of 1, 1> we arrive at the final result

0 m _ m(m=1) _ m(m=1)
PX") = S lp( = pyi ™ (=07
< []ra/2+ vydet[(gi ;G — x)io]- (111)

=1

Here the function g; ;(x) is defined as follows

_ 1)i—1 X
gi.j(x)zygc a5 Ktk 1)4 (l+§). (112)

o 2mi &l

The Case k > 1. Let k be areal number, ¥ > 1. We return to the formulas (102, 103). The
crucial distinction from the case |«| < 1 is that the presence of exponentially growing terms
k"i affects the range of values of vy, ..., v,, which make the major contribution to the final
sum of (102). Indeed, we can write

tv; logk

(M 0Bk il (113)

Therefore, if we keep v; fixed, the sum over x; is rapidly converging. At the same time the
maximum of the v;-dependent exponential part of the r.h.s. of (102) is shifted due to the

appearance of the additional term #v; log«. In a sense, the roles of the variables x,, ..., x,
and n,, ..., n,, are interchanged compared to the case ¥ < 1.
Consequently, instead of summing over n,, ..., n,, and then over xy, ..., x,, we go to the
variables vy, ..., v,, (104), and x,, ..., x,, and evaluate the sum over the latter first.
> D AGE v )
x?<x1 <Xy <+ <Xm {n2,..., n,,,}eZ;[;l
v2t+x,?, vmt+x,(,)l
0
= > Do Y AGE u o — =)/,
(W1, yer=17M" xp=x1+1 Xm=Xp—1+1
(114)
Collecting the factors of A({&;, vi}iL,, {vi — (x; — x,?l)/t},’.”:z) dependent on x, ..., x, we

can evaluate the sum over these variables

0 0
vat+x,, Umt+x, m 0 .
o e (M
tv; — x; +x,,
xp=x1+1 Xm=Xp—1+1i=2

e (m=D 0 —x1) " (tug) 2 1
_(x—1)---(Km—1—1)H(i—z)z(l+0<?)>' (113

i=2

Here we extended the upper limit of all the summations to infinity, which yields a correction
of order of ¥ %', and we used Stirling’s formula to approximate the binomial coefficient

i+n\ n 1
( " )z;(l—i—O(;)) (116)
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We also imply that the value of v; in the effective summation range is finite and positive.
Indeed, the range of summation over v; is defined as above by the requirement that the
exponential parts of A({&;, v;}/L,, {vi — (x; — x,, ) /t},) are not too small. Specifically, the
exponentiated expressions are

1-v
exp{t[h,-(w) +v,-logx“ (117)
(I —pvi
fori =2,...,m,and
I —v
epoh <( v)p>—(m—1)v| 1og;<“, (118)
(I=p
the term (1 — m)v; logk = log(k ™=@+ in the latter coming from the result of the
summation over x, ..., X,, (115). For a real positive x the major contribution to the sums
over vy, ..., v, comes from the neighborhood of the maxima of the exponentiated expres-
sions
lv; —u;| <t ?logt (119)

where the maxima u; are located at

up=u(k'™) (120)
and

u; =u(k) (121)

fori =2, ..., m where

px

ux)=—— . 122
x) I+x—-1Dp (122)
Then we can follow the above procedure to evaluate the sums over vy, ..., v,,. Going from

the sum to an integral over the variables
=i (123)

We arrive at the integral expression
v2t+x,(21 umt+xm

3 Yoo Y AdE v o — (= X))

{Ul,.“,vm}etflzm 0 xp=x1+1 Xm=Xpy—1+1
>x
=1

=1 —p+&p)™ V(1 —p+x'""p)

(m=1)(m=2) m(m—1)
N D (D :
umm="1/2y"= 1 1—p
m _ (=wp\1-m (1 uppy—1
k:](%‘k (1,[,),,4) (“;: [’)“1)

Qo206 = )~ 1 — D]
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+00 ) +00 N m
X/ dyle_)’]/z.../ dye ¥n/? 1_[ ;=)
- —00

o 2<l<j<m
s—2
u~t 1
X s 1+0(-)). 124
I1<y ~/<1—u>> ( (r)) (29
Note that we keep the leading terms of the Taylor expansion in (v; — u;), i =1,...,m,

everywhere under the integral except the product in the last line, where we keep the terms of
two subsequent orders. The reason for the latter is that the leading terms of the multipliers
cancel due to the antisymmetry of the rest of the expression in vy, ..., v,. Therefore, what
contributes is the antisymmetric part of this line, that is I—[;151< j<m (yi —y;)/(m — 1)!, which
contains only the terms of the same order. Inserting it, we again arrive at the Mehta integral
I,_1 1 over (m — 1), variables y,, ..., y,, while the integral over y; decouples, being just
the Laplace integral. After substitution of the explicit form of # and u; the r.h.s. of (124)
becomes

m(m 1)

(1= p4+kp)™ V(1 = p+ &= p) (™ — 1)~k
H:nzz[(l' — D=1 =1)]

m—1 i 1 1=m
X 1m7|,1(27T)7TH(§k— ;) E—x"H7N (125)

k=1
This formula together with (73), (102) and (98) yields

PiX)=0—p+xp)™ V(A —p+«'""p)

m(m D m

(k" — 1" (=1) 7§ dé
TS W - ,Hc 2ri

recm=1

0 0

é:xmka
: [T &-é. (126)
_ 1ym—k m—1 J !
GG e
The integration over &, k =1, ..., m is performed over a circle encircling the singularities
of the expression under the integral, i.e. |&| > «™~!. First we integrate over &,,, then over
En_1, Em—2, ..., & . It turns out that, if we integrate in this order, the expression under the

integral being evaluated will contain only one simple pole at each step. As a result we arrive
at the simple one term expression

0_,0

I!j[l~¢ 2mi (Sk - K_l)m_k(‘s::k Km— 1) 1_[ (%—j Sz

I<i<j<m

Cr>/(””1

_( 1)m(m 1) Zm I(XL V%) (127)

This formula together with (126) results in (19).
Remark 2 An extension of the approximation technique used to complex values of « is
problematic for || > 1. The reason is that in this case the critical points uy, ..., u, are

away from the real axis. It follows then that their contribution can be exponentially smaller
than the other corrections appearing.
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4.2.2 The Limiting Case k — 1

Now we consider the limiting case
t—00, k-1, (1—k)/t=const. (128)

We start with the formula (68) and expand the term (1 — xz;)~**! into its Taylor series,

PI(X,XO)= Z l_[Kn,- <Z+Zz_2>

{n; }eZ’;’O i=2
0

dz; " xitni—! ;
xdetf - p+ ) T = kg . (129)
2miz; Zi I<i,j<m

The integral in the determinant can be evaluated in the saddle point approximation, the
analysis being similar to the one above, (80)—(86), with the same function /;(z), (80) except
that v; now depends on n;:

. .0
vi:w' (130)

What is special about the limit ¥ — 1 is that the saddle point can coincide with a zero of the
factor (1 — kz)/ within the effective range of the summation over v;. Therefore, instead of
expanding this term into a Taylor series, we leave it in the integral as is, while the rest can be
expanded around the saddle point as usual. Then we use the following formula for Hermite
polynomials (see [17], formula 3.462.4),

/oo e‘xz(x—ﬁ)”dxzﬁ(%> H,(iB). (131)

oo

As a result we obtain

dz ) 0_.0 . o 0_.0_
= i@ m (1 —kz) ! — thi T 1
2mwiz

y / ﬁef%ﬂh;’(z*)\éz(l — k(" + ig))j71

00 27T
L (U=v)p
~ efhx(_u—p)v,-)H wi(l—v) (1= p; 1
_—_/2 Jj—1 « —V; B
ﬁ(Zt)J 2 K (1 vl)p
=29 1 —v: X =)= /2 1
i1 P /(= vi) ‘j 1+0(-))- (132)
1—p e !

1

Next, we argue that the dominant range of the summation over X and {n;}{_, is the domain
pt —~/tlogt <x; +n; < pt ++/tlogt, (133)
where x; varies within the range

M <x; <o <x, <t (134)
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and
0<n; <oo. (135)

To this end, consider the integral (132) for some particular i and j. After expanding (1 —
kz;)’ into a binomial sum, it becomes a finite sum of terms like

—(nj+x;—x? k) i +x; —x0+k t
(1 — p) T s prii ( 0 ) (136)
ni+x; —x;+k

where k is a finite integer, 0 < k < j. Beyond the range (133) this can be estimated using

(lo; t)2
Stirling’s formula to be O (t~1/?¢” 2i-p ). The summation over x;, which includes at most ¢
nonzero terms, multiplies this estimate by a factor of 7. Finally the summation over n; yields
an additional factor (1 — «)~, with the result that the order of the contribution from outside
the domain (133) is
0; t)

0((1 — )12 0w, (137)
Below, the leading term of the sum of interest will be shown to decay at most as a power
of t. Therefore, when « is such that (1 — k) = O (t™*) with any fixed s > 0, the term (137)
is asymptotically negligible.

One can approximate (132) using the Taylor formula, which yields

[tp(1=p) ( v —p N\ 1"
det[HFl( 2 (p(l—p)_1+;))]~

ij=1

wj—p)?*
m e -p log?)?
X l_[l_le m(m+l) (1+0<( g ) )) (138)
7% 2ip(p - D] Vi
The determinant can be simplified by adding to every line a multiple of the lines below it,
such that all the terms of the Hermite polynomials except the highest cancel:

det[Hj,l(a,-)];’fj: =(— < am). (139)
Thus, the survival probability takes the following form
m(m—1)
-1z
P[(XO) = m ;S(er))
i, oy, (2m)2 [p(p— 1)]
(x,+n, xm pt) l+n _2
ni 2p(1—p)t ¢
X HK e p=r < ", >
(log1)’®
X A, xo+ng, .., X +0y,) |1+ 0 i , (140)
t

where the summation is over the domains of {x;}/", and {n;}"", defined by the inequalities
(133)—(135). Due to the presence of the Gaussian factor exp( tw; — p)?/C2p = p)D)
the sum over n; converges uniformly in x;. Therefore we can interchange the order of sum-
mations over x; and over n;. This allows us to apply Lemma 1 first to the variables x; and
then also to the variables n;. As the characteristic scale of n; is of order /7 we can use the
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approximation (116) for the binomial coefficient, where the correction term yields an error
of the order O (¢+~!/2) in the final result. To write down the final limiting formula as t — oo
for P(X°) we introduce the rescaled variables

(x; — pt)
= e, 141
= = p) (b
= (142)

Vip(T=p)’

and the transition parameter «, (23), which is constant in the limit under consideration. The
formula (140) then takes the form (24), where f,, (o) is given by (25).

5 Asymptotic Behaviour of f,, («)

In this section we evaluate the limiting behaviour of f, (o) for « — 0o and « — —o0 and
its value at @ = 0. In the latter case it is just the probability normalization of the TASEP,
s0 f,,(0) must be equal 1. The limit « — —oo has no probabilistic meaning, but it can be
considered a particular limit of the generating function of the rescaled particle current in the
TASEP: see Sect. 2. Let us introduce the notation

o0 o0 o0 o0 o0
Jm(oc)=/ du1/ duz~~-/ dum/ de~~/ dvy,
—00 uy Uy —1 0 0

m
_L,2 i—2 —Lanav)2_qu:
xe 2 [ ol e 2t Ay vy g, v ), (143)
=2

for the multiple integral entering into the expression of f, (). Then we have

m(m—1)

—nTr
Q)22+ (m —2)!

Jm(a) = Im(@). (144)

The form of J,, () is reminiscent of the multiple integrals which appear in the theory of
Gaussian random matrix ensembles. The following three lemmas show that in the three
limiting cases J,, (o) can be explicitly evaluated in the form of Mehta integrals.

Lemma 2
m(m—1)
m(m— _1 2 2! A - 2
lim o™ %" ], () = 1,,,,1/2( ) (m —2) (145)

oa—>00 m!

where I, 1/, is the Mehta integral defined in (98).

Proof Let us make a variable change under the integral (25) introducing new integration
variables

o1 =uy, (146)
o =vi+u, i=2,...,m, (147)
Hisi=av;, [i=2,...,m. (148)
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In the new variables the integral (25) can be written as

m—1

(@) = —s 1'[[ dpipf ™ e g, o 15 @), (149)

where we introduce the notation

gy ooy hm—1; )

~[Lan [ an |, e (150)
1t »t—g

o

/ dgne 2T Ay, ). (151)
Om l+”m 1= HMm—2
The function g(u, ..., hym—1; @) is bounded uniformly in @ € R.

g1y oy =15 Q)| < Lip.12, (152)

which can be shown by replacing the Vandermonde determinant under the integral by its
absolute value and extending the lower integration limits to minus infinity. Therefore the
function under the integral in (149) is uniformly bounded and integrable. By the dominated
convergence theorem one can interchange the limit @ — oo and integration. Then, for the
function g(us, ..., n; o) we have

m(m—1)
. (=D 2
lim g (12, ... o @) = L1y , (153)
o—>00 m!:
Remarkably the limiting value does not depend on the variables {1, ..., t;,,—1}. Therefore
the integration in (149) can be performed independently for each i =2, ..., m, each result-
ing in (i — 1)!. This yields (145). d
Lemma 3
Jn(0) = (= 1)’”("2’” I, (154)
(m—Dlm! "
Proof Let us make the variable change
X1 =1Uup,
Xi=Vit+u, i=2,...,m. (155)
Then the integral takes the form
Jn(0) = / Xm/ duz/ dus - / dum/ d x>
Um—1 uz
f dxme™ 2" H(x —u) 2T A ) (156)

Um -2
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The integrals over u;, fori =1, ..., m, can be evaluated step by step. First, for i =m, we
have

* o 1.2
/ dum/ deeinm(Xm _um)mizA(le”-aXm)
Um—1 Um
1 > 71)(2 m—1
= dee 2 '"(Xm—llm,]) A(Xlwuv)(m)» (157)

m—1 Um—1

which is done by changing the integration order. In the next step, the integral over u,,_; can
be calculated by parts:

o o0 o0 1,2 1.2
/ dum—l/ de—l/ dee_mefl_j)(m
u u

m=2 m—1 Um—1
m—3 m—1
X (=1 = tm=1)"""(m = tm=1)""" A1 -5 Xom)
1 *° o0 12 1.2
= —= defl dee_ZX'”*l_ij
m— 2 Up—2 Um—2

X (mel - umfZ)”FZ(Xm - un172)M7l A(XZ: e Xm)

o o o 1.2 1.2
—(m_l) dum71/ de7|/ dxme_ixm—l_fxﬂl

Um—2 Um—1 Um—1
X Q-1 = tm—1)" " Otm — tm-0)" A1, - Xm):|' (158)

The second term cancels because of the antisymmetry of the Vandermonde determinant with

respect to interchange of y,, and y,,_;. Iterating this procedure we remove (m — 1) integrals
in the variables uy, ..., Uy

1 o0 o0 o0
(m—1)! Lo [

2 1 1.2
e [ Tow = x0) e 25 AG, - xm)- (159)
i=2
A symmetrization of the expression under the integral in the variables x;, i =2,...,m,

yields another Vandermonde determinant. Thus

I (0) n" /wd /wd
m = X X
(=2 L, 4%

/ d e 2T | A ) (160)
X1

Finally we add this integral to the (m — 1) similar ones, obtained by interchanging x; with
each of x, ..., xm, and divide the sum by m.

m(m—1)

(=12 o o 12 2 )
I = ,/ Xm"'/ dxme 2T )P (16])
— 1)\m! -

(m —00 e}
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This gives us the stated result. a
Lemma 4
m@m—1)
V2 (—=1)" 7
lim e @ne-02) gy =p,_  Y2EED e (162)
a==o (=2
Proof We start from the integral in (25) and make a change of variables as follows,
xi=vit+to+u, i=1,....m—1, (163)
s;i = la|(u; —uy), i=1,....m—1, (164)
s1=u; —oa(m-—1), (165)

which yields the following integral expression,

o2 =) 00 00 )
€ 2 *15'2 = —53
I () = e dsje 2% dsye dsze ...
— 0 s

oo

00 0 o) m )
X / ds,e” " [ dx, - / dx,, l_l(x,« — 51 —am) 2
K =2

Sm—1 s|+am 1 tam

m 2

iy Lpee oy S S K

xl_[e Z[Xi+‘“|(25‘x’+la\)]A<sl+am,x2+ﬁ...,xm+|—ml). (166)
o o

i=2

Due to the presence of the Gaussian and exponential terms, the main contribution to the
integral comes from finite values of sy, ..., s, and x,, ..., x,,. Therefore, up to corrections
of order of O(1/|«]), we can neglect the terms divided by ||, and extend the lower limits
of integration over x, ..., x,, to —oo. The integrals over s, ..., s, decouple, and we can
evaluate them to 1/(m — 1)!. The Vandermonde determinant becomes antisymmetric with
respect to permutations of the variables x,, ..., x,,. As the integration is over the symmetric
domain, we can leave only the antisymmetric part of the rest of the expression. The product
[T/, (xi — 51 — %)~ then results in

mn-1m-2 A(X2 ..., Xp)
(-1 2 W (167)

After collecting the leading order terms from the first argument of
Asy+am, xa..., %) 2= (@m)" " Axa ..., Xn), (168)

the integral over s; decouples as well, and yields /7. We finally obtain

2m(m—1) (m=1)(m—2)
o Illzlﬂ \/E(_l) m 2m

Tn(a) =~ & (@m)"!
T lae|m=1((m — 1)1)?
© o0 1 m 2
X / dxy - f dxpe” 225225 | A(xa, ..., xm) | (169)
—00 —00
Using the definition of the Mehta integral, (98) we obtain (162). O

@ Springer



514 T.C. Dorlas et al.

The above lemmas, the formula for the Mehta integral (98) and the definition (144) of
fm () establish the results (27)—(29).

6 Discussion of the Results and Conclusion

The first result obtained in this paper is an expression for the survival probability for m
walkers in the SVW model. At the fixed parameter « < 1 and t — oo the leading asymptot-
ics t~™m=D/4 coincides with that for the usual VW [14]. This result is intuitively clear. In
the case of the VW it is obtained by considering the evolution of independent noninteract-
ing particles and reducing the number of its outcomes by dropping those realizations where
the crossings of particle time space trajectories occur. Then, the asymptotics of the survival
probability for two walkers ¢~'/2 follows directly from the diffusion law and the method of
images. For m walkers, the method of images involves m(m — 1)/2 reflecting wall planes.
Each wall brings with it a factor #~!/? providing total contribution ¢ " ~1/4 For any fixed
k < 1 the events of crossing occur with a finite, though changed, probability, so that this
argument still holds. The survival probability changes by a constant factor dependent on «,
leaving Fisher’s law unchanged. As k approaches one this factor diverges, which indicates
a qualitative change of behaviour of the survival probability. As the crossings become less
probable, it finally saturates to the TASEP normalization constant. The transition between
the two regions takes place on the scale (1 — )/ = const, where the effect of the diffu-
sive spreading of particles becomes comparable to the one caused by SVW interaction. In
this case, the survival probability is expressed by the scaling function f;, (), which has the
SVW and TASEP asymptotics as limiting cases.

The formulas for the survival probability in SVW can be reinterpreted in terms of the
moment generating function of the time integrated particle current Y; in TASEP, which, in
turn, can be used to construct the distribution of the same quantity. The cases of generic
k <1 and « > 1 correspond to the tails of the probability distribution of Y, at the large
deviation scale, characterizing positive, (¥; — (¥;))/t > 0, and negative, (Y, — (¥;))/t <O,
deviations respectively. The positive tail has the form specific for the current distribution for
m free independent Bernoulli particles, while the form of the negative tail looks like that
of the distribution for one Bernoulli particle that makes m steps at a time or m particles
jumping one step synchronously. Such asymmetry reveals different mechanisms of positive
and negative fluctuations. For positive deviations m particles have to be “accelerated” in-
dependently. The main contribution to the negative deviations comes from the events when
the first particle decelerates all particles following behind. Our results are to be compared
to the ones obtained by Derrida and Lebowitz [8] (see also [7]) for the large deviation func-
tion of the TASEP current on a ring. In particular, they have shown that for large m the
non-universal tails of the current probability have the form P (Y,/t = v) ~ e™H+®/™1 and
P(Y,/t = v) ~ ef=®/™" for positive and negative deviations respectively. Our results have
the same functional form even for finite m with H_(v) = H, (v) being a simple large de-
viation function of the Bernoulli process. Remarkably, such a mechanism survives on the
infinite lattice, despite the particles drifting apart from each other in the course of time, so
that they meet less and less often. The acceleration-deceleration asymmetry was also ob-
served in the large deviations of the distance travelled by individual particles in TASEP
studied in [19] for a general case of particle dependent hopping rates. There the negative
large deviations do not depend on the order number of a particle whereas the positive ones
do.

The result obtained for the SVW in the transition region (1 — «)+/f = const provides us
with the limiting distribution of the particle current measured at the diffusive scale, |Y; —
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(Y,)| ~ /. The distribution obtained is parameter free, dependent only on the number of
particles. We expect that it is a universal distribution for systems of particles performing a
driven diffusion, independent of the details of microscopic dynamics. The distribution has a
skew, non-Gaussian form, with tails matching the large deviation behaviour asymptotically.

Several directions for future work can be mentioned. First direct continuation of the
present paper is an asymptotic study of the function f,, (o) as m — co. Considering a certain
common scaling with the variable « is expected to give a new universal scaling function
characterizing the KPZ class. Note that in the limiting cases this function reduces to Mehta
integrals, which are the probability normalization constants for Gaussian random matrix
ensembles, namely the Unitary and Orthogonal ensembles. The asymptotic evaluation of
these integrals performed in the random matrix theory resulted in non-trivial densities of
critical points, from which comes the leading contribution to the integrals [32]. It would be
interesting to see how these densities transform from one to another as the parameters vary
between the limiting cases corresponding to different ensembles. It would also be interesting
to study the TASEP confined on a ring. The starting point of this analysis could be the
recently obtained expressions for the Green functions [36]. In this way one could obtain a
scaling function that characterizes the behaviour of KPZ interfaces in finite systems.

Another possible development of the present article is a generalization of the above men-
tioned results for the probability distributions of the distance travelled by an individual par-
ticle in the TASEP and the corresponding correlation functions to SVW case. Note that
similar results exist also for the VW [1]. In both cases the appropriately rescaled distribu-
tion of the distance travelled by a single particle starting from a half filled lattice is shown
to converge, to the so-called Tracy-Widom distributions [43], which appear in the random
matrix theory as a distribution of maximal eigenvalue in the Gaussian ensembles, unitary in
case of TASEP and orthogonal for VW. The SVW model establishes a bridge between these
two cases. However, its Green function has neither a Toplitz form like in VW nor a special
structure like in TASEP, which allowed Sasamoto, [39], to reinterpret it again as a problem
of the VW and finally to represent its evolution as a determinantal point process. Therefore,
a significant extension of the existing techniques is in order. In this connection we should
mention the recent advance for the Partially Asymmetric Simple Exclusion Process [44—
46], which was made only on the basis of the Bethe Ansatz solution without use any free
fermionic representation like VW.

An interesting example of SVW has been proposed recently by Johansson [22] in his
analysis of a domino tiling problem on the Aztec diamond known as the arctic circle prob-
lem. It was shown that the domino configurations are in one-to-one correspondence with
trajectories of an n-particle process which is defined as follows. At each discrete time step a
particle jumps forward with probability g or stays put with probability p = 1 —g. If the next
site is occupied, the probability to stay put is 1 — g(1 — «) as in the SVW model. In addi-
tion, after each step, a particle i can be translated back to the distance s; with probability g*i
provided that s; < X; — X;_; for all i. If one chooses x = —¢, the model belongs to the free
fermion class and its transition probabilities admit a determinant representation. It has been
shown in [22] that the position of the first particle is described by the Airy process in the
thermodynamic limit for the domain wall boundary conditions in the domino tiling problem.
By similarity of the models, one may expect that the extremal statistics of the SVW model
also exhibits a kind of Tracy-Widom distribution for appropriate initial conditions.
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